42 research outputs found

    Optimisation of the weighting functions of an H<sub>∞</sub> controller using genetic algorithms and structured genetic algorithms

    No full text
    In this paper the optimisation of the weighting functions for an H&lt;sub&gt;∞&lt;/sub&gt; controller using genetic algorithms and structured genetic algorithms is considered. The choice of the weighting functions is one of the key steps in the design of an H&lt;sub&gt;∞&lt;/sub&gt; controller. The performance of the controller depends on these weighting functions since poorly chosen weighting functions will provide a poor controller. One approach that can solve this problem is the use of evolutionary techniques to tune the weighting parameters. The paper presents the improved performance of structured genetic algorithms over conventional genetic algorithms and how this technique can assist with the identification of appropriate weighting functions' orders

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Multi-wavelength landscape of the young galaxy cluster RX J1257.2+4738 at z = 0.866 I. The infrared view

    Get PDF
    Context. Many studies have shown how galaxy properties (e.g. colours, morphology, star-forming (SF) activity, active galactic nuclei population) change not only with redshift, but also with local galaxy density, revealing the important effect of the stellar/halo mass and the environment in the evolution of galaxies. A detailed analysis of the star formation activity in a representative sample of clusters will help us to understand the physical processes that cause the observed changes. Aims. We performed a thorough analysis of the star formation activity in the young massive galaxy cluster RX J1257+4738 at z = 0.866, with emphasis on the relationship between the local environment of the cluster galaxies and their star formation activity. We present an optical and infrared (IR) study that benefited from the large amount of data available for this cluster, including new OSIRIS/GTC and Herschel imaging observations. Methods. Using a multi-wavelength catalogue from the optical to the near-infrared, we measured photometric redshifts through a χ2 spectral energy distribution fitting procedure. We implemented a reliable and carefully chosen cluster membership selection criterion including Monte Carlo simulations and derived a sample of 292 reliable cluster member galaxies for which we measured the following properties: optical colours, stellar masses, ages, ultraviolet luminosities and local densities. Using the MIPS 24 Όm and Herschel data, we measured total IR luminosities and star formation rates (SFRs). Results. Of the sample of 292 cluster galaxies, 38 show far-infrared (FIR) emission with an SFR between 0.5 and 45 M⊙ yr-1. The spatial distribution of the FIR emitters within the cluster density map and the filament-like overdensities observed suggest that RX J1257 is not virialised, but is in the process of assembly. The average star formation as a function of the cluster environment parametrised by the local density of galaxies does not show any clear trend. However, the fraction of SF galaxies unveils that the cluster intermediate-density regions is preferred for the SF activity to enhance, since we observe a significant increase of the FIR-emitter fraction in this environment. The analysis of the extinction distributions of the optically red and blue SF galaxies supports the assumption of the red SF galaxies as a dusty population

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin ÎČ7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19

    SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome

    Get PDF
    The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient’s hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≄ 7.35 log10 copies/mL, p = 0.003) and second tertile (≄ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≄ 70 years, SpO2, neutrophils > 7.5 × 103/”L, lactate dehydrogenase ≄ 300 U/L, and C-reactive protein ≄ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome

    A novel non-uniform mutation operator and its application to the problem of optimising controller parameters

    No full text
    The objective of this paper is to introduce a new mutation operator characterised by its non-uniformness. The operator has been used in the parameter optimisation of the controllers of a supply ship. Four different kinds of controllers have been considered and optimised, providing a wide range of optimisation problems with their own unique search spaces to test the mutation operator

    AUV route planning using genetic algorithms

    No full text
    corecore